

2.3.3.301 Sustainable Aviation Fuel from Wet Wastes via Hydrothermal Liquification

April 27, 2023

Organic Waste Conversion Technology Area

Mike Thorson

Pacific Northwest National Laboratory

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Process Overview for Hydrothermal Liquefaction (HTL): Transforming Wet Wastes to Transportation Fuels

- Conceptually simple (i.e., heated pipe), continuous process for dirty, wet feedstocks
- High carbon yields to liquid hydrocarbons (~78% GHG reduction)

Benefit #1: Potential for ~6 billion gallons/year of transportation fuel from wet wastes

Benefit #2: Alternative disposal processes expensive (~\$4/gal fuel produced)

Project Overview: Producing Sustainable Aviation Fuel via Hydrothermal Liquification of Wet Waste

- Potential for 1.5B gal/yr of SAF from HTL of wet wastes
 - ~25% in jet range → Hydrocracking could potentially increase this to >4B gal/yr
 ~20% 2019 US jet fuel demand
- Jet Fuels (including SAF) have stringent fuel requirements
 - HTL SAF refining has lower TRL compared to HTL

Objective: Address key jet fuel property uncertainties via hydroprocessing

Denitrogenation (<2ppm N), Thermal Stability, Tier α and Tier β analysis

Project importance:

Significant SAF volumes from wet wastes possible

Liquid transportation fuels are needed to decarbonize aviation transport

- Long distances/ weight limits electrification
- Existing fleet designed for liquid fuels and will take decades to replace

Potential SAF production:

- 1.5B gal/yr
 - 4B gal/yr with cracking
 - >20% of 2019 US demand

Key feedback from HTL SAF workshop:

Hydrodenitrogenation (HDN) is a significant concern for SAF from HTL of wet wastes

1 – Approach:

Jet fuel must meet detailed specs for safety

Assess
Commercial
Viability
and
Barriers

Aircraft and engines are certified for fuel (e.g., Jet A/A-1)

- A new SAF blend from HTL must be compatible with all infrastructure
- If not equivalent, it would require all new infrastructure and certifications

Engine Limitations

Aircraft Limitations

nns

Aircraft Operator Limitations

Fuel specifications D7566-18

Areas of concern for SAF from HTL of wet wastes:

- High nitrogen content from proteins (Nitrogen: ~2000ppm)
 - All approved SAF pathways have a nitrogen spec of 2ppm
- Thermal stability concerns due to potential Nitrogen-Sulfur interactions

1 – Approach: Addressing Risk / Challenges with Defined Objectives and Milestones

Develop Research Plans

Tasks	Risks / Opportunity	Objectives	
Diversity, Inclusion	Inclusive culture	All PI(s) and task leads complete PNNL course Diversity, Inclusion, and Belonging with documentable action	\checkmark
HDN	Industrially relevant catalysts	Acquire catalysts from Topsoe for HDN work	\checkmark
HDN	Deep N reduction	Achieve nitrogen reduction to <50ppm	\checkmark
Nitrogen and thermal stability analysis	Meet required fuels properties	Tier α and β testing on SAF cut with <50ppm nitrogen	On track
Nitrogen and thermal stability analysis	Nitrogen speciation assessment	Complete Nitrogen Chemiluminescence Detector (NCD) analysis of SAF for nitrogen speciation	On track
HDN	Economic viability	Complete preliminary TEA / LCA to guide the HDN process	On track
Diversity, Inclusion	Tomorrow's workforce	Hire a student from an underrepresented group in STEM	On track
Nitrogen and thermal stability analysis	Fuel stability	Conduct the thermal stability of the HTL -derived fuel compared to that of the conventional fuel (FY24)	On track
HDN	Process viability	Demonstrate the HDN process for >1000-hour stability while maintaining the N levels <2 ppm (FY25)	On track

1 – Approach: Execute Targeted Research Pacific Northwest Aligned to Commercial Embodiment

Experimental data is incorporated into process design for TEA assessment

Incorporating SAF production in SOT updates (FY22 includes deep HDN step)

1 – Approach: **Diversity, Equity, and Inclusion Plan**

Project DEI Task: Hire at least one student from groups under-represented in STEM

PI and task leads on this project completed PNNL course Diversity, Inclusion, and Belonging with documentable action

Outcomes:

- Hired a Chemical Engineering Bachelor student through PNNL's EEDIP program
 - Student is planned to participate in fuel characterization activities
- All PI's and task leads completed training on Diversity, Inclusion and Belonging

1 – Approach:

Integrated workflow between PNNL, WSU and Topsoe

Integrated workflow and handoff points between the partners based on the core capability and technical expertise

2 - Progress and Outcomes:

HTL of Wet Wastes Meets Tier α and β Specs

- ustainable Aviation Fuel from

- ~25% of upgraded fuel in jet range
- Similar mix of cycloalkanes, n-alkanes, iso-alkanes, aromatics to traditional jet
 - Cycloalkanes and aromatics necessary to allow higher fuel penetration
- Positive Tier α and β jet fuel properties¹

2 – Progress and Outcomes: Identified the major Nitrogen-species in Biocrude

Biocrude is rich in Pyrazines, pyrroles, amides, indoles, etc.* as identified via GC/GCMS

GCxGC MS for speciation of N-compounds

Challenges for SAF:

- Nitrogen spec: <2ppm (expected)
- Concern with Nitrogen-Sulfur interactions that can lead to fuel instability issues in engine

¹Cronin, D. J., Subramaniam, S., Brady, C., Cooper, A., Yang, Z., Heyne, J., ... & Thorson, M. R. (2022). Sustainable Aviation Fuel from Hydrothermal Liquefaction of Wet Wastes. *Energies*, 15(4), 1306

*Significant amount of the biocrude does not volatize in the GCxGCMS

2 – Progress and Outcomes: Identified the challenging N-species in Biocrude

- Most challenging species to hydrotreat are the Pyrroles, Imidazoles, Pyrrolidines
- Will pursue further HDN to get to 2ppm N⁺

Hydrotreating conditions:

~400°C / ~1500 psi / ~0.5hr-1 WHSV

Result: ~97% Nitrogen reduction

⁺2ppm N is the project goal based on the level achieved via other SAF pathways

2 - Progress and Outcomes

Reduced the Nitrogen Content in SAF to 53 ppm

- Reduce the N content to 53 ppm
 - 2-stage hydrotreating: 0.5 hr⁻¹, 400°C, 1500 psi
 - ✓ Stage 1: ~60,000 ppm to 5100 ppm
 - ✓ Stage 2: 5100 ppm to 53 ppm
- Estimated additional cost only \$0.04/gge

Promising start: Initial data gives us confidence in the ability for further N reduction

Next step: Understand the impact of N on fuel thermal stability

3 – Impact: Gathering crucial property data before HTL SAF specs are developed

Subset of Jet Fuel					
Specifications	Jet A	FT-SPK	SPK-HEFA	SPK/A	ATJ-SPK
Sulfur, mg/kg	3000	15	15	15	15
Nitrogen, mg/kg	No spec	2	2	2	2
Flash point, °C	38	38	38	38	38
Density, kg/m ³	775-840	730-770	730-772	755-800	730-770
Freezing pt, °C	-40	-40	-40	- 40	-40
Thermal stability, mm					
Hg	25	25	25	25	25
Distillation residue, %	1.5	1.5	1.5	1.5	1.5
Acidity, mg KOH/g	0.1	0.015	0.015	0.015	0.015
Aromatics, vol%	25/26.5	0.5	0.5	20	0.5

Addressing uncertainty regarding SAF from HTL of wet wastes:

- The impact of N on fuel stability in SAF derived from HTL
- The technical challenges with deep denitrogenation
- Addressing the technical uncertainty regarding the need for reduced N

Project importance:

Significant SAF volumes from wet wastes possible

Liquid transportation fuels are needed to decarbonize aviation transport

- Long distances/ weight limits electrification
- Existing fleet designed for liquid fuels and will take decades to replace

Potential SAF production:

- 1.5B gal/yr
 - 4B gal/yr with cracking
 - >20% of 2019 US demand

3 – Impact: HTL solves two crucial challenges to society: Northwest Sustainable Aviation Fuel & Sewage Sludge Disposal

Value #1: Low GHG fuels

- Potential for 1.5 to 4B gal/year of SAF
- 81% reduction in GHG

Value #2: Sludge disposal

- Sludge disposal represents ~50% of wastewater costs
- Provides destruction of forever chemicals
- Costs expected to continue to increase as land application becomes illegal

Two potential revenue streams Example: 100 dry tons/day plant

3.1 M gal fuel/yr² \$12.4M/yr

HTL provides a disposal solution in addition to sustainable fuel production

Offset sludge disposal costs¹: \$7.3-14.6M /yr

Northwest Quad Chart Overview

Timeline

Original Project start date: Oct 1, 2022

Project end date: Sept 30, 2025

	FY 22	Total Award
DOE Funding	\$0	\$1,150,000 (FY23-FY25)
Project Cost Share*	\$0	\$0

TRL at Project Start: 2 TRL at Project End: 4

Project Goal

This project will determine the impact of N on fuel stability in SAF derived from HTL and develop a pathway to reduce the N content to <2ppm.

End of Project Milestone

Demonstrate hydrodenitrogenation (HDN) with over 1000 hours of stable operation while maintaining the Nitrogen levels in the fuels <2 ppm.

Funding Mechanism

Lab Call

Project Partners

- Topsoe
- Washington State University

*Only fill out if applicable.

Summary

Enable SAF production via HTL of wet wastes

Overview

- Determine the impact of N on fuel stability in SAF derived from HTL
- Develop a pathway to reduce the N content to <2ppm

Approach

- Close partnership with industry, TEA and resource assessment teams to prioritize and target research
- SMART milestones to ensure successful impact

Progress and Outcome

- Well defined partnership with catalyst manufacturer and fuel testing experts
- Detailed characterization of the nitrogen species in jet cut
- Promising preliminary

Impact

- Wet-waste feedstocks have the potential to produce 1.5-4.0B gal/y of SAF from wet-wastes
 - >20% of 2019 US aviation demand

Future Outcomes

- Achieve deep denitrogenation (<2ppm N) with an economic impact <\$0.04/gge
- Assess key jet fuel property for SAF
- Assess the impact of Nitrogen on fuel thermal stability

Acknowledgements

Beau Hoffman, BETO Technology Manager

Experimental Team:

- Mike Thorson
- Andy Schmidt
- Uriah Kilgore
- **Todd Hart**
- Sam Fox
- Miki Santosa
- Igor Kutnyakov
- Matt Flake
- Mariefel Olarte
- Lisa Middleton Smith

Analysis Team:

- Yuan Jiang
- Shuyun Li
- Yunhua Zhu
- Aye Meyer
- Lesley Snowden-Swan

Senthil Subramanian Waste Resource Team:

- Tim Seiple
- Andre Coleman

Additional Slides

Publications, Patents, Presentations, Awards, and Commercialization

Publications / Presentations:

None \rightarrow the project kicked-off in FY23

Commercialization Efforts:

- 1. Metro Vancouver is building a demonstration HTL plant based on PNNL's technology
- 2. Aloviam is scaling up the HTL process via an awarded FOA

Thank you

